biogen idec

The Intrinsic Stability of Antibodies Based on Experiment, Design and Prediction

Stephen Demarest

Engineering Stability into Antibody Domains

- For Engineerability/Function
- Antibody domain constructs, i.e. scFvs, intrabodies, etc., often suffer from stability problems
- Expression in non-mammalian hosts
- For Solubility/half-life
- For Manufacturing and Purification

What could be worse than low expressing and aggregated antibodies?

Sequence Basis for Stability Designs

- Many established methods even for antibodies.
- Sequence information can provide rapid, unbiased basis for designs.
- Recent explosion in the genome sequencing of all organisms.

rattusnorvegicusIgG1 ITLTPKVTCVVVDISQDDPEVH--FSWFVDDVEVHTAQ--TRPPEEQFNS rattusnorvegicusIgG2a ITLTPKVTCVVVDISQNDPEVR--FSWFIDDVEVHTAQ--THAPEKQSNS musmusculusIqG3 ISLTPKVTCVVVDVSEDDPDVH--VSWFVDNKEVHTAW--TOPREAOYNS CricetulusmigratoriusIqG ISLTPKITCVVVDVSEEEPDVO--FNWYVNNVEDKTAQ--TETROROYNS OryctolaguscuniculusIqG ISRTPEVTCVVVDVSQDDPEVQ--FTWYINNEQVRTAR--PPLREQQFNS SylvilaguscunicularisIgG ISRTPEVTCVVVDVSQDDPEVO--VTWYINNEQVHTAR--PPLOEQOFNS LepuscalifornicusIqG ISLTPEVTCVVVDVSQDDPEVQ--FTWYINNKQVHTAR--PPLREQQFNS sheepIqGC ISGTPEVTCVVVDVGQDDPEVQ--FSWFVDNVEVRTAR--TKPREEQFNS ovisariesIqG1 ISGTPEVTCVVVDVGQDDPEVQ--FSWFVDNVEVRTAR--TKPREEQFNS ISGTPEVTCVVVDVGHDDPEVK--FSWFVDDVEVNTAT--TKPREEQFNS bosTaurusIqG1 bosTaurusIqG3 ISGTPEVTCVVVDVGQDDPEVQ--FSWFVDDVEVHTAR--TKPREEQFNS humanI qG1 ISRTPEVTCVVVDVSHEDPEVK--FNWYVDGVEVHNAK--TKPREEQYNS PantroglodytesIgG ISRTPEVTCVVVDVSHEDPEVK--FNWYVDGVEVHNAK--TKPREEQYNS humanI qG2 ISRTPEVTCVVVDVSHEDPEVQ--FNWYVDGVEVHNAK--TKPREEQFNS macacafascicularisIqG1 ISRTPEVTCVVVDVSQEDPDVK--FNWYVNGAEVHHAQ--TKPRETQYNS macacamulattaIqG2 ISRTPEVTCVVVDVSQEEPDVK--FNWYVDGVEVHNAQ--TKPREEQFNS susscrofalgG2a ISRTPQVTCVVVDVSQENPEVQ--FSWYVDGVEVHTAQ--TRPKEEQFNS susscrofalgG1 ISOTPEVTCVVVDVSKEHAEVO--FSWYVDGVEVHTAE--TRPKEEOFNS lamaglamaIgG1 ISGRPEVTCVVVDVGKEDPEVN--FNWYIDGVEVRTAN--TKPKEEQFNS CamelusdromedariesIqG ISGRPEVTCVVVDVGQEDPEVN--FNWYIDGVEVRTAN--TKPKEEQFNS canisfamiliarisIqGC TARTPTVTCVVVDLDPENPEVQ--ISWFVDSKQVQTAN--TQPREEQSNG canisfamiliarisIqGA ITRTPEVTCVVLDLGREDPEVO--ISWFVDGKEVHTAK--TOSREOOFNG mustelavisonIqG ISRTPEVTCMVVDL--EDPEVQ--ISWFVDNQEMHTAK--TNSREQQFNS feliscatusNRSDIgG1 ISRTPEVTCLVVDLGPDDSDVQ--ITWFVDNTQVYTAK--TSPREEQFNS equuscaballusIqG1 ITRTPEVTCVVVDVSQENPDVK--FNWYMDGVEVRTAT--TRPKEEQFNS equuscaballusIqG2 ISRTPVVTCVVVNLSDQYPDVQ--FSWYVDNTEVHSAI--TKQREAQFNS OrnithorhynchusIgG1 VAGTPKVTCVVVDLGFEDKDESPVVTWYQGDKELPKTRMLEPPPKEQRNG TachyglossusaculeatusIqG VTGTPKVTCVVVDLGFEDKDEN PVVTWYQGDKELPKSGSVEPPPKFOPMC LSRSPKVTCMVVDVS-DASGVQ--ITWFKGEEEVSSPK MonodelphisdomesticalqG

C_H3 Chosen as Initial Domain for Engineering

Potential Weaknesses within the C_H3 Domain

Thermal Unfolding Behavior of C_H3

Structural Consequences of Optimized Mutations

Beyond Consensus to Stabilize Poorly Behaved Antibody Domains

- Human FAB
- Bacterial expression level ~0.3 mg/L
- Variable function from prep to prep

- *Domain dependent stabilization
- *Functional/Folding consequences

General Protein Engineering Observations

Stabilization can lead to increased expression.

- Stabilization can enhance product quality and functionality, especially in non-mammalian expression hosts.
- Adequate design of sequence databases provides reliable information regarding the tolerability of amino acids at various positions within antibody domains (protein domains).

Human IgG1 Thermal Unfolding as a WHOLE

Variation in Human IgG1 Stability Based on Variable Domains

IgG Sequence/Stability Correlations

Can antibody VARIABLE DOMAIN sequences be used to predict Antibody Stability/Expression?

We trust the mammalian antibody databases for stability engineering, but can we use the sequence information for *de novo* stability prediction?

 Developed a Scoring Algorithm Which Compares individual Variable Domain Sequence of Interest to the entire Database of Mammalian Sequences

How Do Natural Sequences Which Score Badly Behave *In Vitro*?

~20 Biogen Idec Preclinical or Clinical Phase Human(ized) Antibodies (1) Scored AND (2) FAB Stability Tested.

biogen idec

18 BIIB Human(ized) V_H Scores Correlate Roughly with Stability

IgG	Fab	V _H	V _H germline ^a	V _H	V _H	\triangle score	Vĸ	$V_\kappa \text{germlin} \text{e}^{\text{a}}$	V_{κ}	V _K	∆score
	T _M (°C)	sub- class		score	sub class score		sub- class		score	subclass score	
BIIB1	81.6	VH1	X92340VH1	73.8	70.1+/-3.1	+3.7	VK1	M64855VK1	78.2	80.3+/-3.5	-2.1
BIIB2	78.5	VH1	X92340VH1	72.2	70.1+/-3.1	+2.1	VK1	M64855VK1	72.8	80.3+/-3.5	-8.5
BIIB3	78.2	VH1	AB019438VH1	72.6	70.1+/-3.1	+2.5	VK2	X12684VK2	82.4	85.3+/-2.1	-2.9
BIIB4	77.7	VH3	M99649VH3	96.1	92.2+/-4.5	+39	VK2	X12684VK2	83.9	85.3+/-2.1	-1.4
BIIB5	77.1	VH2	X56365VH4	69.8	68.1+/-5.5	+1.7	VK1	X59316VK1	83.0	80.3+/-3.5	2.7
BIIB6	76.8	VH3	M99649VH3	97.7	92.2+/-4.5	+5.6	VK1	M64855VK1	77.4	80.3+/-3.5	-2.9
BIIB7	75.9	VH1	AB019438VH1	72.7	70.1+/-3.1	+2.6	VK3	X72812VK3	83.2	84.1+/-2.4	-0.9
BIIB8	75.6	VH1	Z14300VH1	73.0	70.1+/-3.1	+2.9	VK1	X59316VK1	79.8	80.3+/-3.5	-0.5
BIIB9	74.7	VH3	Z12358VH3	95.2	92.2+/-4.5	+3.0	VK4	Z00023VK4	88.8	92.6+/-2.6	-3.8
BIIB10	74.7	VH4	X56365VH4	69.3	68.1+/-5.5	+0.8	VK1	X59316VK1	84.0	80.3+/-3.5	3.7
BIIB11	73.1	VH1	AB019438VH1	71.3	70.1+/-3.1	+1.2	VK4	Z00023VK4	94.4	92.6+/-2.6	1.8
BIIB12	71.2	VH1	AB019438VH1	67.9	70.1+/-3.1	-2.2	VK4	Z00023VK4	92.5	92.6+/-2.6	-0.1
BIIB13	70.8	VH3	M99657VH3	91.1	92.2+/-4.5	-1.3	VK4	Z00023VK4	93.1	92.6+/-2.6	0.5
BIIB14	70.6	VH7	L10057VH7	65.1	70.2+/-3.2	-5.1	VK-	-	56.6	-	3.00000
BIIB15	68.5	VH3	M99660VH3	92.4	92.2+/-4.5	+0.2b	VK1	M64858VK1	81.6	80.3+/-3.5	1.3
BIIB16	68.0	VH3	M99649VH3	95.6	92.2+/-4.5	+3.3b	VK3	X72812VK3	82.0	84.1+/-2.4	-2.1
BIIB17	57.2	VH3	J00239VH3	89.4	92.2+/-4.5	-3.0	VK2	X63397VK2	84.8	85.3+/-2.1	-0.5
BIIB18	٠.	VH3	M99400VH3	80.0	92.2+/-4.5	-12.3b	VK2	X63397VK2	84.5	85.3+/-2.1	-0.8
											1-00000

Low Sequence Scores Trend With Low Stability Antibodies

SUMMARY

- Low V_H Sequence Scores *TREND* towards lower stability antibodies. No trend observed with V_I sequences.
- Scoring can (should) be used as an initial tool to identify potential problems with therapeutic antibodies or with antibodies isolated from library approaches.

- Scores do not give the entire story
 - (i) certain residue positions more important for stability than others
 - (ii) V-(D-)J-C joining can affect stability
 - (iii) V_H/V_L Compatibility not accounted for

Structural Aspects of IgE versus IgG

See labs of Gould, Jardetzky and Cowburn...

biogen idec

Antibody Isotype Fc Stability

Conformational Changes Evident in FcE at Intermediate pH Levels

Functional Properties of the IgE Fc

- FcERI mediated signaling in allergy and inflammation
- CD23 mediated signaling/transport

IgE/FcERI Mediated Degranulation

FcERlα is stable at pH values where FcE unravels

Interaction Between FcE and FcERI Probed by DSC

 $K_D < 10^{-10-11} (M) SPR*$

pH Dependence of the FcE/FcERI Interaction

How is IgE Naturally Degraded?

Summary of IgE-Fc Characterization

 FcE is intrinsically much less stable than other Ab isotypes.

 pH dependent unfolding of FcE at pH 5 abrogates its interaction with FcERI.

 pH dependent unfolding may provide an novel mechanism for IgE regulation.

Acknowledgements

Biogen Idec

Department of Analytical and Protein Chemistry

FcE

Jennifer Hopp, Julie Chung, Mike Shields, Mike LaBarre, Karen Hathaway, Carmen Young, Flora Huang, Dustin Lloyd, XianJun Cao, Marilyn Kehry, Konrad Miatkowski, Werner Meier

Stability Predictions

Fred Taylor, Flora Huang, Arlene Sereno, Julia Coronella, Robert Peach, LiYing Jiang, Scott Glaser

Syngenta

TMRI

Genevieve Hansen, Jeff Rogers

MicroCal

Verna Frasca, Dile Holton, Eric Reese, Steve Spotts, William Gelb, Brett Treganowan

BACK-UPs

IgG Structure in Terms of Cooperatively Folded Subunits

Saphire et al., 2001 Science, 293

biogen idec

IgE Mechanism of Action

- Smooth muscle contraction
- Bronchoconstriction
- Airway microvasculature leakage
- Chronic inflammation
- Ciliated epithelial loss and damage
- Smooth muscle proliferation
- Increased mucus secreting cells

biogen idec

Loss of Interaction between FcE and FcERla Correlates with FcE Unfolding

Structural Features of Mutant C_H3 Unchanged

All Domains Form Stable Dimers

(even at concentrations as low as 50 nM)

Stability Measurement of Human IgG1s with Different VH Scores

Stability Measurement of Human IgG1s with Different VH1 Scores

FcG is Natively Folded Above pH 3

IgG1 Has the Most Stable IgG-Fc

Distribution of *Human* VH Scores Against a Mammalian VH Database

*Scoring is Weighted

biogen idec

Aggregation/Instability Explains Anomolous FACS Behavior of BIIB17

BIIB17 Instability/Aggregation Issues

Variable domain Germline Subclasses

Based on genome and usage:

$$V_H = V_H 1 - V_H 7$$

$$V_{\kappa} = V_{\kappa} 1-4$$

$$V_{\lambda} = V_{\lambda} 1 - 3$$

Overexpression of C_H3 Domains in Bacteria

Cytoplasmic production of oxidized C_H3 using BL21trxB(DE3).

Outline

1. Sequence-Based Engineering and Prediction of Antibody Domain Stability

2. Variations in Stability between Antibody Isotypes

- IgG vs. IgE

FcE Undergoes a Structural Change < pH 5

Circular Dichroism (CD) Spectra of FcE

- FcE structural transition < pH 5 coincides with SEC/ANS data
- FcE structure is identical at pHs 5-9

biogen idec

pH Dependent Thermodynamic Changes in the FcE/FcERI Interaction

Schematic Diagram of an Antibody

Equations:

$$\mathbf{K}_{eq}(\mathbf{T}_{\mathbf{M}}) = [\mathbf{FcERI}_{\mathbf{U}}][\mathbf{FcE}_{\mathbf{U}}]/[\mathbf{Complex}] \text{ at } \mathbf{T}_{\mathbf{M}}.$$

Algebra:

(1)
$$K_A(T_M) = K_U FcE(T_M) * K_U FcERI(T_M) / K_{eq}(T_M)$$

Using the Gibbs-Helmholtz eqn:

$$(2) \ K_A(T_M) = (1/K_{eq}) * exp([-\Delta H(T_MapoFcE)/R]*(1/T_M-1/T_MapoFcE) + [\Delta CpFcE/R]*(ln(T_M/T_MapoFcE) + (T_MapoFcE/T_M)-1) + [-\Delta H(T_MapoFcERI)/R]*(1/T_M-1/T_MapoFcERI) + [\Delta CpFcERI/R]*(ln(T_M/T_MapoFcERI) + (T_MapoFcERI/T_M)-1)]$$

Once $K_A(T_M)$ is derived, extrapolate back to 25 °C using ΔC_P Complex and ΔH at 25 C, i.e.:

(3)
$$K_A(25C) = 1/K_D(25C) = K_A(T_M) * exp[(-\Delta H(25C)/R)*(1/T_{25C}-1/T_M)+(\Delta C_P/R)*(ln(T_{25C}/T_M)+1-(T_{25C}/T_M))]$$

Brandts, J.M and Lin L.-N. (1990) Biochemistry. 29, pp. 6927-6940.

How we get the Terms.....

```
K_A = Association Constant (1/M)
K_p = Dissociation Constant (M)
K<sub>1</sub>FcE = Unfolding equilibrium constant of the FcE CE3-CE4 domains
K<sub>11</sub>FcERI = Unfolding equilibrium constant of FcERI
K_{\alpha\alpha}(T_M) = Equilibrium Constant for System at midpoint of Complex unfolding
T_{M} = Midpoint of the FcE/FcERI Complex melting curve
T_{
m M}apoFeF – Midnoint of the free FeF CF3-CF4 domain simultaneous melting curve
T<sub>M</sub>apol
\Delta C_p Fcl
\Delta C_p Fel \Delta H(25C) = Enthalpy of complex formation
\Delta C_{\mathbf{p}} C_{\mathbf{0}}
\Delta H(T_{M})
                                             complex formation
ΔH(250
R = Universal Gas Constant
```

Blue = Derived from combination of experiments

Purple = Derived from a single experiment

Red = **Assumption**

Black = **Constant**

Green = Derived from Literature

Assumptions:.

- (1) ΔC_p FcE and ΔC_p FcERI are Estimated from the size of the two proteins.
- (2) CE2 and FcG are not part of the interaction.
- (3) Two-State Unfolding (FAST scan rate)

Δ H°(T) and Δ C_P° Terms for the Fcε-FcεRlα Interaction at Lower pHs

Introduction to Immunoglobulins

- IgG (IgG1, IgG2, IgG3, IgG4) most common antibody isotype in serum used for host defense.
 ***The Isotype of choice for Antibody Therapeutics!!
- IgE Wound healing and parasite defense. *Allergic disease*. ***New Classes of Antibody Therapeutics...
- IGA (IgA1, IgA2, dlgA) found in mucosal areas and secreted in the digestive tract to fight microorganisms.
- gM -Pentameric, used as initial, low affinity immune response for clearing viral or bacterial agents.
- **g** D B-cell class switching, diseases and more...

FcE Unfolds Below pH 5

biogen idec

△C_P° at Low pH Values

